
CERTIFICATIONS AND COMPLIANCE

ANSI/UL STD 1995 CSA F326 ASHRAE 62.1 PHIUS

US ASHRAE 62.2 2016 STD CAN/CSA 22.2 No 236 259823 CAN/CSA C439-09

FAN CURVE (2 Constant Air Flow ECM Fans)											
				Results based on a 250 CFM ventilation set							
Static pressure		Air flow output			1	100	200	CFM 300 in			
Pa	inH ₂ O	m³/h	CFM		400		\Rightarrow	1.6			
100	0.4	426	251		350 - 350 -			1.4			
200	0.8	425	250		250 - 200 -			0.8			
250	1.0	425	250		100			0.6			
300	1.2	421	248		Pa 50	170	240	0.2			
400	1.6	408	241		m3/h	170 AIR I	340 LOW =	510			

SPECIFICATIONS

PentaCare V12[®] Compact Air Treatment Unit VENTILATION/AIR EXCHANGE MODE: ENERGY PERFORMANCE

ı													
	resul	ts teste by E	39-09 Sta d and ve Exova fied by H	erified	Sensible Recovery Efficiency (SRE) "When all electricity is deducted"	Adjusted Sensible Recovery Efficiency (ASRE) "Mostly used by PHIUS"	Apparent Sensible Effectiveness (ASE) "A.K.A. the thermal efficiency" No more published						
			publi by HV		YES	YES							
	La		ults fro a Lab	m	YES	YES	YES						
	HE	AT RE	COVE	RY PEI	RFORMANG	CE (fresh air fro	om outside)						
	°F	°C	CFM	m³/h	%	%	%						
	32	0	100	170	116	119	178						
1	32	0	248	421	87	94	112						
	-13	-13 -25 100 17		170	72	74	98						

CFM = Cubic Feet	ner Minute	$m^3/h = Cuh$	oic meter	ner Hoi
CI IVI — CUOIC I CCI	perminate	111 /11 — Cut	IC IIIC CCI	PCITIO

MOISTURE REMOVAL (Calculated using AHAM DH-1 Protocol)										
Test conditions	Gallons per day	Pints per day	Liters per day							
Outdoor 80°F/60% RH Indoor 80°F/60% RH Airflow @ 180 CFM (in Cooling)	14	112	53							

COOLING + HEATING IN RECIRCULATION (Calculated using AHRI 210/240 Protocol)										
Heat pump heating test conditions	BTU/H	СОР	HSPF							
Conditions	J. 0/11		Reg. I	Reg. II	Reg. III	Reg. IV	Reg. V	Reg. VI		
Outdoor 47°F/43°F Indoor 70°F/60°F Airflow 250 CFM, 1 H ₂ O	8700	3.0			10.0	9.5	8.6			
Outdoor 35°F/33°F Indoor 70°F/60°F Airflow 250 CFM, 1 H ₂ O	6700	2.7	10.6	10.4				10.4		
Outdoor 17°F/15°F Indoor 70°F/60°F Airflow 250 CFM, 1 H ₂ O	5600	2.4								
Heat pump cooling test conditions	BTU/H	EER	SEER							
Outdoor 95°F/75°F Indoor 80°F/67°F Airflow 250 CFM, 1 H ₂ O	11200	11.6								
Outdoor 82°F/65°F Indoor 80°F/67°F Airflow 250 CFM, 1 H ₂ O	11500	13.4	14.1							

SOUND PRESSURE LEVELS (SPL) (Measured 3.28 ft (1 m) away)										
Test conditions with compressor ON and fully ducted	SPL									
100 CFM @ 0.2 H ₂ O	35 dB(A)									
150 CFM @ 0.3 H ₂ O	37 dB(A)									
180 CFM @ 0.4 H ₂ O	39 dB(A)									
250 CFM @ 0.7 H ₂ O	43 dB(A)									

CANADA AND USA CUSTOMER SUPPORT
WWW.MINOTAIR.COM
INFO@MINOTAIR.COM
TOLL FREE: 1.855.888.2292
HEAD OFFICE: 1.819.777.2454

Electrical Specifications				Electronically Commutated Motor Fans [x2]			Fresh Air Range ASHRAE 62.2 &		Hermetic Rotary Compressor			Refrigerant	
Tension	Phase/Hz	Circuit	Breaker	Power	FLA	Airflow Range	CSA F326 Compliant		Power RI		Α	LRA	D 410A
120 V	1/60	12.3 A	15 A	136 W max.	2 A	80-250 CFM ± 9 %	20-180 CFM		725 W	6.6 A		39 A	R-410A
Coils Filters rating High			Efficiency Filter rating		Casing	Casing		Color			Round Ports [x4]		
MERV 8 (EN G4) HE			PA MERV 15 (E	N F9)	100% Alumi	100% Aluminium		n Glossy White		Ø	ø 6-8 in (150-200 mm)		

Non-contractual document. All data and information contained in this document are subject to change without notice. Pictures, tables and drawings presented for information only. © MINOTAIR Ventilation Inc. (PENTACARE-V12-ENG-032019)

PentaCare V12 Compact Air Treatment Unit Series

With balanced fresh-air HRV performances certified by HVI

PentaCare V12 Compact Air Treatment Unit is 4 machines in 1:

Dehumidifier Air Source Heat Pump High Efficiency HEPA MERV 15 Air Filtration device Compressor-based HRV with Net Zero Positive performances in some conditions

The all-in-one compact HVAC solution for Passive Houses and Multifamily Buildings

PentaCare V12 Compact Air Treatment Unit Series

With balanced fresh-air HRV performances certified by HVI

Net Zero Positive⁺ **Ventilation**[©]

Provides more energy than it uses in certain conditions:

Discover the best heat recovery performances in North America with results tested and verified by Exova and certified by HVI

- 1 The PentaCare V12 produces Net Zero Positive* Ventilation® performances in certain conditions having the best heat recovery performances of all HRVs and ERVs available in North America using active heat recovery, world's most efficient recovery technology, along with our proprietary Triple HEAT Recovery System[©].
- 2 Another first is the ever-highest SRE of the industry at 116% when moving 100 CFM indoor of 32°F outdoor air.
- 3 All that with a record-breaking ASE of 178%, it results providing fresh air indoor around 102°F which helps heating at the same time.

The all-in-one compact **HVAC** solution for **Passive Houses and Multifamily Buildings**

Fresh air

Heating

Cooling

Humidity

Air filtration

CONSTANT AIR FLOW FANS

Once only seen in commercial applications, you can count on our constant airflow ECM fans to deliver the right amount of fresh air in your ducts up to 1.6 inch of static pressure. As a result, our fans **EXHAUST AIRFLOWS** to help your home achieve balanced air flow pressure.

VOC AND CO² POLLUTANT SENSORS

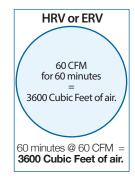
Available from renown and specialized manufacturers and easily connect them to our machines. So you can do precise IAQ Multi-Room Sensing. Like monitoring a new-born bedroom in priority. (OPTION)

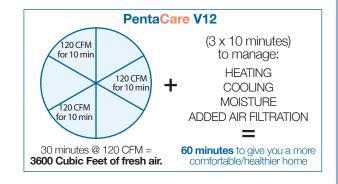
UPDATABLE CONTROLLER (updates done by USB kev)

Our controller is the only one in the industry to be updatable and of industrial grade. Over time, not only will you benefit from the latest features and updates, but you will also stay away from obsolescence. In cooling requirements. Gives also useful validation data will do REAL-TIME CALIBRATION OF INTAKE & this regard the PentaCare V12 is in a league of its own once again!

> 5000 WATTS ELECTRICAL DUCT HEATER (EDH) Totally controlled by our microcontroller, the heat intensity is fully variable to generate the precise amount of auxiliary heat required the heating season. Minotair makes the EDH mandatory when the PentaCare V12 is used as the main heating source such as in a passive house or apartment.

MINOTAIR DYNAMIC CALCULATOR®


To provide data to insert into your Passive House modeling tools (PHPP and WUFI Passive) based on the design conditions of the fresh air, heating and for heating and cooling loads for all types of buildings (including non-Passive House buildings).(FREE).


DUCTWORK DESIGN AND LOAD CALCULATIONS SERVICES AVAILABLE

By partnering with engineering/technical firms, you can rely on professionals to take care of these very important details. Service available throughout the USA and Canada. (FEES APPLICABLE)

The basis for the modes of operation of our PentaCare V12 is its unique Axis Damper

Here's how our Axis Damper[©] works compared to HRVs + ERVs. And for ease of explanation we use a one-hour window example:

This example above is **one of many multiple ways** on how the **PentaCare V12** effectively manage all the aspects of indoor climate with our advanced algorythms making a great difference!

FASTER + EASIER + LESS EXPENSIVE:

NO roof curb to install

NO refrigeration lines to pass

NO more long inefficient ductwork

NO enclosure to install outdoor resulting in a longer-lasting product being installed inside

NO visual annoyance on facades

HIGH-QUALITY. COMMERCIAL-GRADE:

World-class, durable product

Multifamily remote control & monitoring with BACnet[™] or Modbus[®](option)

Compliant with ASHRAE 62.1 & 62.2 versions 2010, 2013 and 2016

Fully compliant with PHIUS For PHI please contact us.

The 2 positions of our Axis Damper[©]

VENTILATION / AIR EXCHANGE MODE

For fresh air, pollutants removal, active heat recovery, For indoor air heating, cooling, "net BTU" heating & cooling and summer fresh air dehumidification and added filtration. free cooling & turbo cooling.

TOP VIEW

RECIRCULATION MODE

PentaCare V12 Compact Air Treatment Unit is 4 machines in 1

Dehumidifier

Air Source Heat Pump

High Efficiency HEPA MERV 15 Air Filtration device

Compressor-based HRV with Net Zero Positive performances in some conditions

PentaCare V12 Compact ATU takes care of 5 elements

Fresh Air Fresh air supply + air pollutants reduction

The PentaCare V12 brings in fresh air and gets ride of the pollutants contained in stale air.

Air Filtration with high efficiency here air filtration

Our HEPA filter is top of its class at MERV 15/F9 filtration level. This impressive level of air filtration is made possible by the a special filtration medium and our powerful energy efficient ECM Constant Airflow fan technology.

Humidity Management with automatic dehumidification

The PentaCare V12 uses its HUMIWATCH 365® exclusive system to eliminate excessive moisture better than all other HRV, ERV or heat pump based air exchangers. The end result: Minotair gets rid of up to 112 pints of water per day (this is about 50% more than our closest competitor).

PIONNEERING HUMIDITY RECOVERY IN HEATING SEASON

A first in the market: our "Automatic Shower Detector" feature recirculates the warm moist air from your shower automatically when the indoor air is too dry.

Heating + Cooling Fresh air along with "NET BTU" COOLING &

The PentaCare V12 performs a very precise and efficient distribution of treated fresh air (filtered + cooled or heated or dehumidified) directly to all the rooms serviced by the ductwork. That means a healthier and more comfortable place to live.

In a certain temperature range, the PentaCare V12 performs like no other HRV/ERV by supplying conditionned fresh air with a surplus heat (or cooling in summer) that will reduce the heating load, all while ventilating.

Energy-efficient free cooling

Useful during some cool nights (in summer for example) to both cool and freshen your home naturally at almost no cost using only the fans! And for a maximum effect you can also use the Turbo Cooling mode (making good use of the compressor) that will add cooling to that already naturally cool night air!

